by: Greg Keller, DVM, MS, DACVR
Anchor Jump Menu:
General Procedures Classification  Laboratory Certification Instructions for Testing  References

Autoimmune thyroiditis is the most common cause of primary hypothyroidism in dogs. The disease has variable onset, but tends to clinically manifest itself at 2 to 5 years of age. Dogs may be clinically normal for years, only to become hypothyroid at a later date. The markers for autoimmune thyroiditis, autoantibody formation (autoantibodies to thyroglobulin, T4 or T3), usually occur prior to the occurrence of clinical signs. The majority of dogs that develop autoantibodies have them by 3 to 4 years of age. Development of autoantibodies at any time in the dog's life is an indication that the dog probably has the genetic form of the disease. Using current technology only a small fraction of false positive tests occur.

As a result of the variable onset of the presence of autoantibodies, periodic testing is necessary. Dogs that are negative at 1 year of age may become positive at 6 years of age. Dogs should be tested every year or two to be certain they have not developed the condition. Since the majority of affected dogs will have autoantibodies by 4 years of age, annual testing for the first 4 years is recommended. After that, testing every other year should suffice. Unfortunately, a negative test at any one time will not guarantee that the dog will not develop thyroiditis.

This data can be used by breeders in determining which dogs are best for their breeding program. Knowing the status of the dog and the dog's lineage, breeders and genetic counselors can decide which breedings are most appropriate for reducing the incidence of autoimmune thyroiditis in the offspring. The Animal Health Diagnostic Laboratory at Michigan State University has the largest pooled database on breed prevalence of autoimmune thyroiditis (Table 8).

Back to top

Table 8: Michigan State University thyroid statistics

Breed Rank Number Of Evaluations Percent Autoimmune Thyroiditis Percent Equivocal
English Setter 1 774 32.0 8.5
Old English Sheepdog 2 464 25.9 7.5
German Wirehaired Pointer 3 160 21.9 6.2
Boxer 4 4045 21.1 4.2
Giant Schnauzer 5 344 20.3 8.1
Tibetan Terrier 6 138 20.3 13.0
Dalmation 7 1882 18.3 6.5
Beagle 8 3566 18.0 6.5
Rhodesian Ridgeback 9 846 17.8 5.9
Maltese 10 833 17.4 6.5
English Setter 11 10357 16.6 6.6
American Staffordshire Terrier 12 216 16.2 6.9
Siberian Husky 13 690 15.2 5.4
Shetland Sheepdog 14 7487 14.7 6.2
Golden Retriever 15 21617 14.5 4.7
Basenji 16 325 14.5 7.1
Chesapeake Bay Retriever 17 678 14.0 6.2
Alaskan Malamute 18 811 13.4 6.9
Brittany 19 765 13.2 4.8
Gordon Setter 20 339 13.0 9.7
Irish Setter 21 952 12.5 8.2
Border Collie 22 989 12.4 5.2
English Cocker Spaniel 23 318 12.3 5.3
Borzoi 24 205 12.2 6.8
Great Dane 25 1108 11.8 7.6
Australian Shepherd 26 1164 10.7 4.6
Akita 27 1457 10.3 8.7
German Shorthaired Pointer 28 611 10.0 6.9
Mastiff 29 965 9.9 5.7
Saluki 30 101 9.9 5.0
Samoyed 31 1021 9.8 6.1
Schipperke 32 290 9.7 3.1
Doberman Pinscher 33 5141 9.3 5.9
Rottweiler 34 3447 9.2 6.2
Airedale Terrier 35 715 9.0 6.2
Manchester Terrier 36 101 8.9 7.9
Vizsla 37 275 8.7 5.1
American Eskimo 38 407 8.6 4.9
Afghan Hound 39 256 8.6 5.1
Saint Bernard 40 331 8.5 6.9
Weimaraner 41 828 8.3 6.5
English Springer Spaniel 42 776 8.2 7.7
Bullmastiff 43 535 8.2 5.2
Great Pyrenees 44 484 8.1 4.1
Bloodhound 45 172 7.6 6.4
Scottish Terrier 46 971 7.5 5.8
Keeshond 47 987 7.5 5.7
Bernese Mountain Dog 48 607 7.4 4.3
Standard Schnauzer 49 109 7.3 11.0
Chow Chow 50 1432 7.0 6.6

October 2002

Back to top


General procedures


To identify those dogs that are phenotypically normal for breeding programs, and to gather data on the genetic disease of autoimmune thyroiditis.

Clearance issued

A breed registry number will be issued for all dogs found to be normal at 12 months of age or older. Age will be noted on the certificate since the classification can change as the dog ages. There is an initial OFA fee and no charge for recertification at a later date. It is recommended that reexamination occur at ages 2,3,4,6, and 8 years.

Preliminary evaluation

Dogs less than 12 months of age can be evaluated for the owner's information, however few dogs are positive at that age.

Dogs with autoimmune thyroiditis

All data, whether normal or abnormal, should be submitted to help assure accuracy of the database. There is no OFA fee for entering an abnormal evaluation of the thyroid into the data bank. Abnormal information will not be released into the public domain unless the owner gives permission for this release by initialing the appropriate line on the application form.

Thyroid abnormalities fall into several categories, and two types are defined by the registry:

  1. Autoimmune Thyroiditis - Known or suspected to be heritable.
  2. Idiopathic Hypothyroidism - Of unknown origin.

Dogs with laboratory results that are not definitive will be considered as equivocal. It is recommended that the test be repeated in three to six months.

Back to top



Thyroid classifications are based on the most current and scientifically validated tests available.

Indices of thyroiditis

Free T4 by dialysis (FT4D)-This test is considered to be the "gold standard" for assessment of the thyroid's production and cellular availability of thyroxine. FT4D concentration is expected to be decreased in dogs with thyroid dysfunction due to autoimmune thyroiditis.

Canine thyroid simulating hormone (cTSH)-This test helps determine the site of the lesion in cases of hypothyroidism. In autoimmune thyroiditis, thyroid gland function is reduced, while the pituitary gland continues to function normally. Therefore, when FT4D levels fall due to a malfunctioning thyroid gland, the pituitary produces elevated levels of cTSH in an attempt to stimulate thyroid production. Thus, the cTSH concentration is expected to be abnormally elevated in dogs with thyroid atrophy from autoimmune thyroiditis.

Thyroglobulin Autoantibodies (TgAA)-This test measures the level of thyroid autoantibodies (antibodies directed against normal body tissue). Positive levels of thyroid antibodies are an indication that an autoimmune process is damaging the dog's thyroid gland.

  1. Normal
    FT4D within normal range
    cTSH within normal range
    TgAA is negative.
  2. Positive autoimmune thyroiditis
    FT4D less than normal range
    cTSH greater than normal range
    TgAA is positive
  3. Positive compensative autoimmune thyroiditis
    FT4D within normal range
    cTSH greater than or equal to normal range
    TgAA positive
  4. Idiopathically reduced thyroid function
    FT4 D less than normal range
    cTSH greater than normal range
    TgAA negative
  5. All other results are considered equivocal

Back to top


Laboratory certification

In an attempt to standardize testing methodology, laboratories are required to pass a certification process. Laboratories may apply, and if successful will be approved to perform analysis for OFA thyroid certification.

The following laboratories are approved, and should be contacted directly for the appropriate submission forms (other than the OFA application form), sample handling procedures, and laboratory service fee before collecting the sample.

Animal Health Diagnostic Laboratory
B629 W. Fee Hall-B
Michigan State University
Lansing, MI 48824-1315

New York State Animal Health Diagnostic Laboratory
College of Veterinary Medicine, Cornell University
Upper Tower Rd. 
Ithaca, NY 14852

Animal Health Laboratory
University of Guelph
Bldg. 49, McIntosh Lane
Guelph, Ontario, Canada N1G 2W1
519-824-4120 ext. 4518

Veterinary Diagnostic Laboratory
College of Veterinary Medicine
University of Minnesota
1333 Gortner Ave
St. Paul, MN 55108

University of California
Veterinary Medical Teaching Hospital
Clinical Pathology, Chemistry, Room 1017
1 Garrod Drive
Davis, CA 95616

Texas Veterinary Medical Diagnostic Laboratory
1 Sippel Rd.
College Station, TX 77843

1345 Denison St.
Markham, Ont., Canada L3R 5V2
905-475-7309 fax

Back to top


Instructions for testing

  1. The veterinarian or owner must obtain the "Application for Thyroid Database" from the Orthopedic Foundation for Animals, Inc. (phone 573-442-0418), or online at
  2. The veterinarian and owner must complete their respective portions of the form.
  3. Two milliliters (2 ml) of serum are needed for testing, and the serum sample must be from freshly collected blood. Use a plain "red-top" tube for blood collection. Do not use a serum separator tube with clot additives or any other type of plasma collection tube. After collection, place the blood sample in the refrigerator for 60 to 90 minutes to allow clotting. Centrifuge, collect the serum, and transfer to a plain plastic or glass tube suitable for shipping. Clearly label the sample with the owner's name, animal's identification, date of blood collection, and "OFA Thyroid Panel." If the specimen is to be stored for more than 12 hours prior to shipping, frozen storage is recommended.
  4. Ship to the approved laboratory of choice via an overnight courier service. It is recommended that all specimens be packaged properly and shipped so they are received either chilled or frozen. Serum samples arriving unchilled or at room temperature within 48 hours of the collection date will be accepted. However, samples arriving after this time must be received either chilled or frozen in order to be accepted for registry testing. Contact the laboratory for further information as necessary.
  5. Female dogs should not be tested during an estrus cycle. The date of last routine vaccination should be noted.
  6. Please do not submit whole blood, clotted blood, or plasma.
  7. Severely lipemic or hemolyzed specimens are also unacceptable.
  8. Test results will be mailed or faxed only to the submitting veterinarian and the Orthopedic Foundation for Animals, Inc.. Results will not be available from the laboratory by telephone. The OFA will send a report to the veterinarian and to the owner.

Back to top


  1. Bennett D: Hip Dysplasia and Ascorbate Therapy: Fact or Fancy? Seminars in Vet. Med. And Surg., Vol. 2, No. 2, 1987, p. 152-157.

  2. Corley EA, Carlson W: Radiographic, Genetic, and Pathologic Aspects of Elbow Dysplasia. J Am Vet Med Assoc, 1965;147:1651.

  3. Corley EA, et al: Reliability of Early Radiographic Evaluation for Canine Hip Dysplasia Obtained from the Standard Ventrodorsal Radiographic Projection. JAVMA, Vol. 211, No. 9, November 1997, pp. 1142-1146.

  4. Grondalen J, Grondalen T: Arthrosis in the Elbow Joint of Young, Rapidly Growing dogs. Nordish Veterinarmedicin, 1981:33:1-16.

  5. Grondalen J: Arthrosis in the Elbow Joint of Young, Rapidly Growing Dogs: Interrelation between Clinical Radiological, and Pathoanatomical Findings. Nordish Veterinarmedicin, 1982; 34:65-75.

  6. Kasstrom H: Nutrition, Weight Gain, and Development of Hip Dysplasia: An Experimental Investigation in Growing Dogs with Special Reference to the Effect of Feeding Intensity. Acta Radiol. Suppl., Vol 344: 135-179, 1975.

  7. Kealy RD, et al: Effects of Limited Food Consumption on the Incidence of Hip Dysplasia in Growing Dogs. JAVMA, Vol. 201, No. 6, 1992, p.857-863.

  8. Kealy RD, et al: Effect of Diet Restriction on Life Span and Age-related Changes in Dogs. JAVMA, 2002; 220: p.1315-1320.

  9. Leighton EA: Genetics of Canine Hip Dysplasia. JAVMA, Vol. 210, No. 10, 1997, pp. 1474-1479.

  10. Lust G et al: Joint Laxity and its Association with Hip Dysplasia in Labrador Retrievers. AJVR, Vol. 54, No. 12, 1993, p.1990-1999.

  11. Lust, G et al: Comparison of Three Radiographic Methods for Diagnosis of Hip Dysplasia in Eight-month Old Dogs. JAVMA, 2001; 219: p.1242-1246.

  12. Olsson SE: Osteochondrosis in Domestic Animals. ACTA Radiologic Suppl., 358, 1978, pp.299-305.

  13. Olsson SE: The Early Diagnosis of Fragmented Coronoid Process and Osteochondritis Dissecans of the Canine Elbow Joint. JAAHA, 1983:19(5):616-626.

  14. Padgett GA, et al: The Inheritance of Osteochondritis Dissecans and Fragmented Coronoid Process of the Elbow Joint in Labrador Re­triever. JAAHA, 1995; 31: 327-330.

  15. Read RA, et al: Fragmentation of the Medical Coronoid Process of the Ulna in Dogs: A Study of 109 Cases. J. Sm. Anim. Prac., 1990; 32(7), 330-334.

  16. Reed AL, et al: Effect of Dam and Sire Qualitative Hip Conformation Scores on Progeny Hip Conformation. JAVMA, 2000; 217: 675-680.

  17. Rettenmaier JL, Keller GG, et al: Prevalence of Canine Hip Dysplasia in a Veterinary Teaching Hospital Population. Vet. Rad. & Ultra­sound, Vol. 43, No. 4, 2002, p. 313-318.

  18. Smith, GK et al: Coxofemoral Joint Laxity from Distraction Radiography and its Contemporaneous and Prospective Correlation with Lax­ity, Subjective Score, and Evidence of Degenerative Joint Disease from Conventional Hip-Extended Radiograph in Dogs. AJVR, Vol 54: 1021-1042, No. 7, July, 1993.

  19. Swenson L, Audell L, Hedhammar A: Prevalence and Inheritance of and Selection for Elbow Arthrosis in Bernese Mountain Dogs and Rottweilers in Sweden and Benefit: Cost Analysis of a Screening and Control Program. JAVMA, 1997; 210: 215 - 221.

  20. Tomlinson JL: Quantification of Measurement of Femoral Head Cover­age and Norberg Angle within and among four breeds of dogs. AJVR, 2000; 61: p.1492-1498.

  21. Willis MB: Practical Genetics for Dog Breeders. H. F. & G. Witherby Ltd, Great Britain, 1992.

  22. Wind A: Elbow Incongruity and Development Elbow Dysplasia in the Dog (Part 1). J Amer Anim Hosp Assoc 1986:22:711-724.


G. G. Keller, D.V.M., MS, Diplomate of A.V.C.R., is the Executive Director of Orthopedic Foundation for Animals, Inc. 

Dr. Keller received his Doctorate in Veterinary Medicine in 1973 and was in a small animal private practice until 1987 at which time he accepted the Associate Director position for the Orthopedic Foundation for Animals. He received the Masters degree in Veterinary Medicine and Surgery in 1990 and Diplomate status in the American College of Veterinary Radiology in 1994. He assumed the role of Executive Director for the Orthopedic Foundation for Animals in January, 1997.

OFA acknowledges the contributions of:
R. Hovan, Drs. A. Reed, L.A. Corwin and E.A. Corley - OFA, Dr. R. Nachreiner - autoimmune thyroiditis

This article was originally printed on the OFA website as part of its introductory article, "The use of health databases and selective breeding" (PDF), and may be viewed in its entirety at

Copyright © 2003 / 2012 with all rights reserved.

This publication cannot be reproduced in any form or by any means without prior written approval from the author(s).